Commutator Properties for Periodic Splines

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Commutator Properties for Periodic Splines

Commutator properties are established for periodic smoothest splines (on uniform meshes) operated on by certain pseudo-diierential operators. The commutation involves the operations of multiplication by a smooth function, and application of the operator of orthogonal projection onto a spline space; or the orthogonal projection is replaced by a discrete version of orthogonal projection obtained ...

متن کامل

Periodic smoothing splines

Periodic smoothing splines appear for example as generators of closed, planar curves, and in this paper they are constructed using a controlled two point boundary value problem in order to generate the desired spline function. The procedure is based on minimum norm problems in Hilbert spaces and a suitable Hilbert space is defined together with a corresponding linear affine variety that capture...

متن کامل

Periodic Splines, Harmonic Analysis and Wavelets

We discuss here wavelets constructed from periodic spline functions. Our approach is based on a new computational technique named Spline Harmonic Analysis (SHA). SHA to be presented is a version of harmonic analysis operating in the spaces of periodic splines of defect 1 with equidistant nodes. Discrete Fourier Transform is a special case of SHA. The continuous Fourier Analysis is the limit cas...

متن کامل

Periodic and Recursive Control Theoretic Smoothing Splines

In this paper a recursive control theoretic smoothing spline approach is proposed for reconstructing a closed contour. Periodic splines are generated through minimizing a cost function subject to constraints imposed by a linear control system. The optimal control problem is shown to be proper and sufficient optimality conditions are derived for a special case of the problem using Hamilton-Jacob...

متن کامل

Some Properties for Analysis-suitable T-splines

Analysis-suitable T -splines (AS T -splines) are a mildly topological restricted subset of T -splines which are linear independent regardless of knot values [1–3]. The present paper provides some more iso-geometric analysis (IGA) oriented properties for AS T splines and generalizes them to arbitrary topology AS T -splines. First, we prove that the blending functions for analysis-suitable T -spl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Approximation Theory

سال: 1999

ISSN: 0021-9045

DOI: 10.1006/jath.1997.3276